
ESc 101: Fundamentals of Computing

Lecture 33

Apr 1, 2010

Lecture 33 () ESc 101 Apr 1, 2010 1 / 11



Outline

1 Defining Global Variables for Multiple Files

Lecture 33 () ESc 101 Apr 1, 2010 2 / 11



Global Variable

A global variable is defined outside of any function.

Its scope is over the entire program from the point it is defined.

In the recursive function for Fibonacci sequence, we use two global
variables: F[] and m.

Lecture 33 () ESc 101 Apr 1, 2010 3 / 11



Global Variable

A global variable is defined outside of any function.

Its scope is over the entire program from the point it is defined.

In the recursive function for Fibonacci sequence, we use two global
variables: F[] and m.

Lecture 33 () ESc 101 Apr 1, 2010 3 / 11



The SIZE Variable

To fix the size of each number during execution, we need to make the
SIZE also variable instead of a constant.

One possible way of doing this is to defined it in one of the files for
addition library.

However, it will not then be available in the files preceding it in
during compilation.

Lecture 33 () ESc 101 Apr 1, 2010 4 / 11



The SIZE Variable

To fix the size of each number during execution, we need to make the
SIZE also variable instead of a constant.

One possible way of doing this is to defined it in one of the files for
addition library.

However, it will not then be available in the files preceding it in
during compilation.

Lecture 33 () ESc 101 Apr 1, 2010 4 / 11



The SIZE Variable

To fix the size of each number during execution, we need to make the
SIZE also variable instead of a constant.

One possible way of doing this is to defined it in one of the files for
addition library.

However, it will not then be available in the files preceding it in
during compilation.

Lecture 33 () ESc 101 Apr 1, 2010 4 / 11



Defining SIZE in Header File

To get around this, we can define SIZE in the header file numbers.h.

However, since the header is included in every file, this gives rise to
multiple places where SIZE is defined: this is not allowed!

Is there a way to circumvent this problem?

Lecture 33 () ESc 101 Apr 1, 2010 5 / 11



Defining SIZE in Header File

To get around this, we can define SIZE in the header file numbers.h.

However, since the header is included in every file, this gives rise to
multiple places where SIZE is defined: this is not allowed!

Is there a way to circumvent this problem?

Lecture 33 () ESc 101 Apr 1, 2010 5 / 11



Defining SIZE in Header File

To get around this, we can define SIZE in the header file numbers.h.

However, since the header is included in every file, this gives rise to
multiple places where SIZE is defined: this is not allowed!

Is there a way to circumvent this problem?

Lecture 33 () ESc 101 Apr 1, 2010 5 / 11



The extern Declaration

In one of the files, we define the variable:
int SIZE = 10;

In all other files, we declare that the variable is defined in some other file
by saying:
extern int SIZE;

Lecture 33 () ESc 101 Apr 1, 2010 6 / 11



The extern Declaration

In one of the files, we define the variable:
int SIZE = 10;

In all other files, we declare that the variable is defined in some other file
by saying:
extern int SIZE;

Lecture 33 () ESc 101 Apr 1, 2010 6 / 11



Can it be Put in the Header?

This works, but requires SIZE to be defined or declared in every file.

It is more convenient to put the definition in the header file.

But then we come back to the problem of multiple definitions.

We need to define SIZE in the header file, and also make sure that
this definition is valid in only one of the files.

In the remaining files, it is just declared using extern.

Lecture 33 () ESc 101 Apr 1, 2010 7 / 11



Can it be Put in the Header?

This works, but requires SIZE to be defined or declared in every file.

It is more convenient to put the definition in the header file.

But then we come back to the problem of multiple definitions.

We need to define SIZE in the header file, and also make sure that
this definition is valid in only one of the files.

In the remaining files, it is just declared using extern.

Lecture 33 () ESc 101 Apr 1, 2010 7 / 11



Can it be Put in the Header?

This works, but requires SIZE to be defined or declared in every file.

It is more convenient to put the definition in the header file.

But then we come back to the problem of multiple definitions.

We need to define SIZE in the header file, and also make sure that
this definition is valid in only one of the files.

In the remaining files, it is just declared using extern.

Lecture 33 () ESc 101 Apr 1, 2010 7 / 11



Can it be Put in the Header?

This works, but requires SIZE to be defined or declared in every file.

It is more convenient to put the definition in the header file.

But then we come back to the problem of multiple definitions.

We need to define SIZE in the header file, and also make sure that
this definition is valid in only one of the files.

In the remaining files, it is just declared using extern.

Lecture 33 () ESc 101 Apr 1, 2010 7 / 11



The ifdef Directive

We solve this by differentiating between files using directives to the
compiler:

<2->

#ifdef SOME_CONSTANT

int SIZE = 10;

#endif

The above tells the compiler to include the variable definition in a file only
if the constant SOME CONSTANT is defined in the file.

Lecture 33 () ESc 101 Apr 1, 2010 8 / 11



The ifdef Directive

We solve this by differentiating between files using directives to the
compiler:

<2->

#ifdef SOME_CONSTANT

int SIZE = 10;

#endif

The above tells the compiler to include the variable definition in a file only
if the constant SOME CONSTANT is defined in the file.

Lecture 33 () ESc 101 Apr 1, 2010 8 / 11



The ifdef Directive

We solve this by differentiating between files using directives to the
compiler:

<2->

#ifdef SOME_CONSTANT

int SIZE = 10;

#endif

The above tells the compiler to include the variable definition in a file only
if the constant SOME CONSTANT is defined in the file.

Lecture 33 () ESc 101 Apr 1, 2010 8 / 11



The ifndef Directive

#ifndef SOME_CONSTANT

extern int SIZE;

#endif

The above tells the compiler to include the variable declaration in a file
only if the constant SOME CONSTANT is not defined in the file.

Lecture 33 () ESc 101 Apr 1, 2010 9 / 11



The ifndef Directive

#ifndef SOME_CONSTANT

extern int SIZE;

#endif

The above tells the compiler to include the variable declaration in a file
only if the constant SOME CONSTANT is not defined in the file.

Lecture 33 () ESc 101 Apr 1, 2010 9 / 11



Putting it Together in the Header File

#ifdef NUMBER_SIZE

int SIZE = 10;

#endif

#ifndef NUMBER_SIZE

extern int SIZE;

#endif

Lecture 33 () ESc 101 Apr 1, 2010 10 / 11



Declarations in Other Files

In one of the files, we give
#define NUMBER SIZE 1 before including the header file.

In all other files, we do nothing.

Lecture 33 () ESc 101 Apr 1, 2010 11 / 11



Declarations in Other Files

In one of the files, we give
#define NUMBER SIZE 1 before including the header file.

In all other files, we do nothing.

Lecture 33 () ESc 101 Apr 1, 2010 11 / 11


	Defining Global Variables for Multiple Files

